Tech Reports
Tech Report kmi-00-05 Abstract
Sequence Learning via Bayesian Clustering by Dynamics
Techreport ID: kmi-00-05
Date: 2000
Author(s): Paola Sebastiani, Marco Ramoni and Paul Cohen
This chapter introduces a Bayesian method for clustering dynamic processes. The method models dynamics as Markov chains and then applies an agglomerative clustering procedure to discover the most probable set of clusters capturing different dynamics. To increase efficiency, the algorithm uses an entropy-based heuristic search strategy. When applied to clustering sensor data from mobile robots, the algorithm produces clusters that are meaningful in the domains of application. 1. Department of Mathematics, Imperial College of Science, Technology and Medicine 2. Knowledge Media Institute, The Open University 3. Department of Computer Science, University of Massachusetts at Amherst
Publication(s):
Also in Sequence Learning: Paradigms, Algorithms, and Applications, L. Giles and R. Sun, editors, Springer, New York, NY, 2000.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Knowledge Management is...

Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.
Check out these Hot Knowledge Management Projects:
List all Knowledge Management Projects
Check out these Hot Knowledge Management Technologies:
List all Knowledge Management Technologies
List all Knowledge Management Projects
Check out these Hot Knowledge Management Technologies:
List all Knowledge Management Technologies

