KMi Publications

Tech Reports

Tech Report kmi-00-06 Abstract


Profiling your Customers using Bayesian Networks
Techreport ID: kmi-00-06
Date: 2000
Author(s): Paola Sebastiani, Marco Ramoni and Alexander Crea
Download PDF

This report describes a complete Knowledge Discovery session using Bayesware Discoverer, a program for the induction of Bayesian networks from incomplete data. We build two causal models to help an American Charitable Organization understand the characteristics of respondents to direct mail fund raising campaigns. The first model is a Bayesian network induced from the database of 96,376 Lapsed donors to the June '97 renewal mailing. The network describes the dependency of the probability of response to the renewal mail on a subset of the variables in the database. The second model is a Bayesian network representing the dependency of the dollar amount of the gift on the variables in the same reduced database. This model is induced from the 5% of cases in the database corresponding to the respondents to the renewal campaign. The two models are used for both predicting the expected gift of a donor and understanding the characteristics of donors. These two uses can help the charitable organization to maximize the profit.

Publication(s):

Also in ACM SIGKDD Explorations, 1(2), 2000
 
KMi Publications
 

Knowledge Management is...


Knowledge Management
Creating learning organisations hinges on managing knowledge at many levels. Knowledge can be provided by individuals or it can be created as a collective effort of a group working together towards a common goal, it can be situated as "war stories" or it can be generalised as guidelines, it can be described informally as comments in a natural language, pictures and technical drawings or it can be formalised as mathematical formulae and rules, it can be expressed explicitly or it can be tacit, embedded in the work product. The recipient of knowledge - the learner - can be an individual or a work group, professionals, university students, schoolchildren or informal communities of interest.
Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.