KMi Publications

Tech Reports

Tech Report kmi-00-07 Abstract


Robust Outcome Prediction for Intensive-Care Patients
Techreport ID: kmi-00-07
Date: 2000
Author(s): Marco Ramoni, Paola Sebastiani and Richard Dybowski
Download PDF

Missing data are a major plague of medical databases in general, and of Intensive Care Units databases in particular. The time pressure of work in an Intensive Care Unit pushes the physicians to omit randomly or selectively record data. These different omission strategies give rise to different patterns of missing data and the recommended approach of completing the database using median imputation and fitting a logistic regression model can lead to significant biases. This paper applies a new classification method, called robust Bayes classifier, that does not rely on any particular assumption about the pattern of missing data and compares it to the median imputation approach using a database of 324 Intensive Care Unit patients. 1. Knowledge Media Institute, The Open University 2. Department ofÊMathematics, Imperial College of Science, Technology and Medicine 3. Department of Medicine, King's College London

Publication(s):

Also in Methods of Information in Medicine, 2000.
 
KMi Publications Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Knowledge Management is...


Knowledge Management
Creating learning organisations hinges on managing knowledge at many levels. Knowledge can be provided by individuals or it can be created as a collective effort of a group working together towards a common goal, it can be situated as "war stories" or it can be generalised as guidelines, it can be described informally as comments in a natural language, pictures and technical drawings or it can be formalised as mathematical formulae and rules, it can be expressed explicitly or it can be tacit, embedded in the work product. The recipient of knowledge - the learner - can be an individual or a work group, professionals, university students, schoolchildren or informal communities of interest.
Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.