Tech Reports
Tech Report kmi-00-07 Abstract
Robust Outcome Prediction for Intensive-Care Patients
Techreport ID: kmi-00-07
Date: 2000
Author(s): Marco Ramoni, Paola Sebastiani and Richard Dybowski
Missing data are a major plague of medical databases in general, and of Intensive Care Units databases in particular. The time pressure of work in an Intensive Care Unit pushes the physicians to omit randomly or selectively record data. These different omission strategies give rise to different patterns of missing data and the recommended approach of completing the database using median imputation and fitting a logistic regression model can lead to significant biases. This paper applies a new classification method, called robust Bayes classifier, that does not rely on any particular assumption about the pattern of missing data and compares it to the median imputation approach using a database of 324 Intensive Care Unit patients. 1. Knowledge Media Institute, The Open University 2. Department ofÊMathematics, Imperial College of Science, Technology and Medicine 3. Department of Medicine, King's College London
Publication(s):
Also in Methods of Information in Medicine, 2000.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Knowledge Management is...

Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.
Check out these Hot Knowledge Management Projects:
List all Knowledge Management Projects
Check out these Hot Knowledge Management Technologies:
List all Knowledge Management Technologies
List all Knowledge Management Projects
Check out these Hot Knowledge Management Technologies:
List all Knowledge Management Technologies

