KMi Publications

Tech Reports

Tech Report kmi-05-14 Abstract


Extracting Domain Ontologies with CORDER
Techreport ID: kmi-05-14
Date: 2005
Author(s): Camilo Thorne, Jianhan Zhu, Victoria Uren
Download PDF

The CORDER web mining engine developed at the Knowledge Media Institute computes a lexical coocurrence network out of websites - a binary relation R. A natural extension of CORDER would be that of learning an ontology. However, our work shows that coocurrence proves insufficient to discover concepts and conceptual taxonomies (i.e. very simple ontologies) out of this network. To tackle this problem two unsupervised learning methods were studied based, on the one hand, on set similarity (and thus on a set-based representation of the data) and, on the other hand, on cosine similarity (and thus on a vector-space representation of the data). The underlying idea being that of taking into account, for the clustering, as features, their related coocurring entities (and thus the indirect links among the entities), as suggested, for instance, by O. Ferret. For the purposes of this study, we restricted ourselves to (solely) research areas. The most promising results in our experiments were given by the vector-space representation. To validate the results we used the ACM classification of computer science research areas as our gold standard.
 
KMi Publications
 

Knowledge Management is...


Knowledge Management
Creating learning organisations hinges on managing knowledge at many levels. Knowledge can be provided by individuals or it can be created as a collective effort of a group working together towards a common goal, it can be situated as "war stories" or it can be generalised as guidelines, it can be described informally as comments in a natural language, pictures and technical drawings or it can be formalised as mathematical formulae and rules, it can be expressed explicitly or it can be tacit, embedded in the work product. The recipient of knowledge - the learner - can be an individual or a work group, professionals, university students, schoolchildren or informal communities of interest.
Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.