KMi Publications

Tech Reports

Tech Report kmi-06-09 Abstract


LRD: Latent Relation Discovery for Vector Space Expansion and Information Retrieval
Techreport ID: kmi-06-09
Date: 2006
Author(s): Alexandre Gonçalves, Jianhan Zhu, Dawei Song, Victoria Uren, Roberto Pacheco
Download PDF

In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effec-tively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex rela-tionships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.

Publication(s):

Alexandre Goncalves, Jianhan Zhu, Dawei Song, Victoria Uren, Roberto Pacheco. LRD: Latent Relation Discovery for Vector Space Expansion and Information Retrieval. In Proc. of The Seventh International Conference on Web-Age Information Management (WAIM 2006), June, Hong Kong, China.
 
KMi Publications
 

Knowledge Management is...


Knowledge Management
Creating learning organisations hinges on managing knowledge at many levels. Knowledge can be provided by individuals or it can be created as a collective effort of a group working together towards a common goal, it can be situated as "war stories" or it can be generalised as guidelines, it can be described informally as comments in a natural language, pictures and technical drawings or it can be formalised as mathematical formulae and rules, it can be expressed explicitly or it can be tacit, embedded in the work product. The recipient of knowledge - the learner - can be an individual or a work group, professionals, university students, schoolchildren or informal communities of interest.
Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.