Tech Reports
Tech Report kmi-97-03 Abstract
Efficient Parameter Learning in Bayesian Networks from Incomplete Databases
Techreport ID: kmi-97-03
Date: 1997
Author(s): Marco Ramoni and Paola Sebastiani
Current methods to learn conditional probabilities from incomplete databases use a common strategy: they complete the database by inferring somehow the missing data from the available information and then learn from the completed database. This paper introduces a new method - called bound and collapse (BC) - which does not follow this strategy. BC starts by bounding the set of estimates consistent with the available information and then collapses the resulting set to a point estimate via a convex combination of the extreme points, with weights depending on the assumed pattern of missing data. Experiments comparing c to the Gibbs Samplings are also provided. 1. Knowledge Media Institute, The Open University. 2. Department of Actuarial Science and Statistics, City University.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Knowledge Management is...

Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.
Check out these Hot Knowledge Management Projects:
List all Knowledge Management Projects
Check out these Hot Knowledge Management Technologies:
List all Knowledge Management Technologies
List all Knowledge Management Projects
Check out these Hot Knowledge Management Technologies:
List all Knowledge Management Technologies

