KMi Publications

Tech Reports

Tech Report kmi-05-02 Abstract


Text Mining Methods for Event Recognition in Stories
Techreport ID: kmi-05-02
Date: 2005
Author(s): Kelly Vincent
Download PDF

Navigating an online story collection requires a system which can make connections between the stories and their elements. One known way of accomplishing this is by annotating the stories, which can be a costly process. Finding methods for providing computer support for this process is a tactic for bringing the cost down. This paper describes several experiments which tested a variety of text mining methods for viability in accurately assisting the classification and annotation of stories in a small document collection. Latent Semantic Indexing is tested for dimension reduction, and decision trees, k nearest neighbor and naïve Bayes are all tested for classification. Additionally, both stemming and removing stopwords are tried. The study shows that all of these methods can be useful, but that there is great variability in their performance even within this small collection.
 
KMi Publications Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Multimedia and Information Systems is...


Multimedia and Information Systems
Our research is centred around the theme of Multimedia Information Retrieval, ie, Video Search Engines, Image Databases, Spoken Document Retrieval, Music Retrieval, Query Languages and Query Mediation.

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.

Visit the MMIS website