KMi Publications

Tech Reports

Tech Report kmi-11-01 Abstract


Social Learning Analytics
Techreport ID: kmi-11-01
Date: 2011
Author(s): Simon Buckingham Shum,Rebecca Ferguson
Download PDF

We propose that the design and implementation of effective Social Learning Analytics presents significant challenges and opportunities for both research and enterprise, in three important respects. The first is the challenge of implementing analytics that have pedagogical and ethical integrity, in a context where power and control over data is now of primary importance. The second challenge is that the educational landscape is extraordinarily turbulent at present, in no small part due to technological drivers. Online social learning is emerging as a significant phenomenon for a variety of reasons, which we review, in order to motivate the concept of social learning, and ways of conceiving social learning environments as distinct from other social platforms. This sets the context for the third challenge, namely, to understand different types of Social Learning Analytic, each of which has specific technical and pedagogical challenges. We propose an initial taxonomy of five types. We conclude by considering potential futures for Social Learning Analytics, if the drivers and trends reviewed continue, and the prospect of solutions to some of the concerns that institution-centric learning analytics may provoke.

Publication(s):

NOTE: This 2011 Technical Report was withdrawn on 11 Sept. 2012, having been subsumed by two peer reviewed publications: see the PDF coversheet for details.
 
KMi Publications
 

Multimedia and Information Systems is...


Multimedia and Information Systems
Our research is centred around the theme of Multimedia Information Retrieval, ie, Video Search Engines, Image Databases, Spoken Document Retrieval, Music Retrieval, Query Languages and Query Mediation.

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.

Visit the MMIS website