KMi Publications

Tech Reports

Tech Report kmi-11-02 Abstract


Unsupervised data linking using a genetic algorithm
Techreport ID: kmi-11-02
Date: 2011
Author(s): Andriy Nikolov,Mathieu d'Aquin,Enrico Motta
Download PDF

As commonly accepted identifiers for data instances in semantic datasets (such as ISBN codes or DOI identifiers) are often not available, discovering links between overlapping datasets on the Web is generally realised through the use of fuzzy similarity measures. Configuring such measures, i.e. deciding which similarity function to apply to which data properties with which parameters, is often a non-trivial task that depends on the domain, ontological schemas, and formatting conventions in data. Existing solutions either rely on the user's knowledge of the data and the domain or on the use of machine learning to discover these parameters based on training data. In this report, we present a novel approach to tackle the issue of data linking which relies on the unsupervised discovery of the required similarity parameters. Instead of using labeled training data, the method takes into account several desired properties which the distribution of output similarity values should satisfy. The method includes these features into a fitness criterion used in a genetic algorithm to establish similarity parameters that maximise the quality of the resulting linkset according to the considered properties. We show in experiments using benchmarks as well as real-world datasets that such an unsupervised method can reach the same levels of performance as manually engineered methods, and how the different parameters of the genetic algorithm and the fitness criterion affect the results for different datasets.
 
KMi Publications
 

Multimedia and Information Systems is...


Multimedia and Information Systems
Our research is centred around the theme of Multimedia Information Retrieval, ie, Video Search Engines, Image Databases, Spoken Document Retrieval, Music Retrieval, Query Languages and Query Mediation.

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.

Visit the MMIS website