KMi Publications

Tech Reports

Tech Report kmi-12-01 Abstract


The State of Learning Analytics in 2012: A Review and Future Challenges
Techreport ID: kmi-12-01
Date: 2012
Author(s): Rebecca Ferguson
Download PDF

Learning analytics is a significant area of technology‐enhanced learning that has emerged during the last decade. This review of the field begins with an examination of the technological, educational and political factors that have driven the development of analytics in educational settings. It goes on to chart the emergence of learning analytics, including their origins in the 20th century, the development of data-driven analytics, the rise of learning-focused perspectives and the influence of national economic concerns. It next focuses on the relationships between learning analytics, educational data mining and academic analytics. Finally, it sets out the current state of learning analytics research, and identifies a series of future challenges.

Publication(s):

Ferguson, R. (2012). The State Of Learning Analytics in 2012: A Review and Future Challenges. Technical Report KMI-12-01, Knowledge Media Institute, The Open University, UK. http://kmi.open.ac.uk/publications/techreport/kmi-12-01
 
KMi Publications
 

Multimedia and Information Systems is...


Multimedia and Information Systems
Our research is centred around the theme of Multimedia Information Retrieval, ie, Video Search Engines, Image Databases, Spoken Document Retrieval, Music Retrieval, Query Languages and Query Mediation.

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.

Visit the MMIS website