KMi Publications

Tech Reports

Tech Report kmi-97-09 Abstract


Discovering Bayesian Networks in Incomplete Databases
Techreport ID: kmi-97-09
Date: 1997
Author(s): Marco Ramoni and Paola Sebastiani
Download Postscript

Bayesian Belief Networks (BBNs) are becoming increasingly popular in the Knowledge Discovery and Data Mining community. A BBN is defined by a graphical structure of conditional dependencies among the domain variables and a set of probability distributions defining these dependencies. In this way, BBNs provide a compact formalism - grounded in the well-developed mathematics of probability theory - able to predict variable values, explain observations, and visualize dependencies among variables. During the past few years, several efforts have been addressed to develop methods able to extract both the graphical structure and the conditional probabilities of a BBN from a database. All these methods share the assumption that the database at hand is complete, that is, it does not report any entry as unknown. When this assumption fails, these methods have to resort to expensive iterative procedures which are infeasible for large databases. This paper describes a new Knowledge Discovery system based on an efficient method able to extract the graphical structure and the probability distributions of a BBN from possibly incomplete databases. An application using a large real-world database will illustrate methods and concepts underlying the system and will assess its advantages as a Knowledge Discovery system. 1. Knowledge Media Institute, The Open University. 2. Department of Actuarial Science and Statistics, City University.
 
KMi Publications
 

Multimedia and Information Systems is...


Multimedia and Information Systems
Our research is centred around the theme of Multimedia Information Retrieval, ie, Video Search Engines, Image Databases, Spoken Document Retrieval, Music Retrieval, Query Languages and Query Mediation.

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.

Visit the MMIS website