KMi Publications

Tech Reports

Tech Report kmi-00-06 Abstract


Profiling your Customers using Bayesian Networks
Techreport ID: kmi-00-06
Date: 2000
Author(s): Paola Sebastiani, Marco Ramoni and Alexander Crea
Download PDF

This report describes a complete Knowledge Discovery session using Bayesware Discoverer, a program for the induction of Bayesian networks from incomplete data. We build two causal models to help an American Charitable Organization understand the characteristics of respondents to direct mail fund raising campaigns. The first model is a Bayesian network induced from the database of 96,376 Lapsed donors to the June '97 renewal mailing. The network describes the dependency of the probability of response to the renewal mail on a subset of the variables in the database. The second model is a Bayesian network representing the dependency of the dollar amount of the gift on the variables in the same reduced database. This model is induced from the 5% of cases in the database corresponding to the respondents to the renewal campaign. The two models are used for both predicting the expected gift of a donor and understanding the characteristics of donors. These two uses can help the charitable organization to maximize the profit.

Publication(s):

Also in ACM SIGKDD Explorations, 1(2), 2000
 
KMi Publications
 

Narrative Hypermedia is...


Narrative Hypermedia
Narrative is concerned fundamentally with coherence, for instance, whether that be a fiction, an historical account or an argument, none of which 'make sense' unless they are put together in a coherent manner.

Hypermedia is the combination of hypertext for linking and structuring multimedia information.

Narrative Hypermedia is therefore concerned with how all of the above narrative forms, plus the many other diverse forms of discourse possible on the Web, can be effectively designed to communicate coherent conceptual structures, drawing inspiration from theories in narratology, semiotics, psycholinguistics and film.