KMi Publications

Tech Reports

Tech Report kmi-04-18 Abstract


Semi-Automatic Population of Ontologies from Text
Techreport ID: kmi-04-18
Date: 2004
Author(s): David Celjuska, Maria Vargas-Vera
Download PDF

This paper describes a system for semi-automatic population of ontologies with instances from unstructured text. The system is based on supervised learning and therefore learns extraction rules from annotated text and then applies those rules on newly documents for ontology population. It is based on three componentes: Marmot, a natural language processor; Crystal, a dictionary induction tool; and Badger, an information extraction tool. The important part of the entire cycle is a user who accepts, rejects or modifies newly extracted and suggested instances to be populated. A description of experiments performed with text corpus consisting of 91 documents is given in turn. The results cover the paper and support a presented hypothesis of assigning a rule confi-dence value to each extraction rule to improve the performance.
 
KMi Publications
 

Narrative Hypermedia is...


Narrative Hypermedia
Narrative is concerned fundamentally with coherence, for instance, whether that be a fiction, an historical account or an argument, none of which 'make sense' unless they are put together in a coherent manner.

Hypermedia is the combination of hypertext for linking and structuring multimedia information.

Narrative Hypermedia is therefore concerned with how all of the above narrative forms, plus the many other diverse forms of discourse possible on the Web, can be effectively designed to communicate coherent conceptual structures, drawing inspiration from theories in narratology, semiotics, psycholinguistics and film.