KMi Publications

Tech Reports

Tech Report kmi-97-03 Abstract


Efficient Parameter Learning in Bayesian Networks from Incomplete Databases
Techreport ID: kmi-97-03
Date: 1997
Author(s): Marco Ramoni and Paola Sebastiani
Download Postscript

Current methods to learn conditional probabilities from incomplete databases use a common strategy: they complete the database by inferring somehow the missing data from the available information and then learn from the completed database. This paper introduces a new method - called bound and collapse (BC) - which does not follow this strategy. BC starts by bounding the set of estimates consistent with the available information and then collapses the resulting set to a point estimate via a convex combination of the extreme points, with weights depending on the assumed pattern of missing data. Experiments comparing c to the Gibbs Samplings are also provided. 1. Knowledge Media Institute, The Open University. 2. Department of Actuarial Science and Statistics, City University.
 
KMi Publications
 

Narrative Hypermedia is...


Narrative Hypermedia
Narrative is concerned fundamentally with coherence, for instance, whether that be a fiction, an historical account or an argument, none of which 'make sense' unless they are put together in a coherent manner.

Hypermedia is the combination of hypertext for linking and structuring multimedia information.

Narrative Hypermedia is therefore concerned with how all of the above narrative forms, plus the many other diverse forms of discourse possible on the Web, can be effectively designed to communicate coherent conceptual structures, drawing inspiration from theories in narratology, semiotics, psycholinguistics and film.