Tech Reports
Tech Report kmi-97-06 Abstract
Learning Bayesian Networks from Incomplete Databases
Techreport ID: kmi-97-06
Date: 1997
Author(s): Marco Ramoni and Paola Sebastiani
Bayesian approaches to learn the graphical structure of Bayesian Belief Networks (BBNs) from databases share the assumption that the database is complete, that is, no entry is reported as unknown. Attempts to relax this assumption often involve the use of expensive iterative methods to discriminate among different structures. This paper introduces a deterministic method to learn the graphical structure of a BBN from a possibly incomplete database. Experimental evaluations show a significant robustness of this method and a remarkable independence of its execution time from the number of missing data. 1. Knowledge Media Institute, The Open University. 2. Department of Actuarial Science and Statistics, City University.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Narrative Hypermedia is...

Hypermedia is the combination of hypertext for linking and structuring multimedia information.
Narrative Hypermedia is therefore concerned with how all of the above narrative forms, plus the many other diverse forms of discourse possible on the Web, can be effectively designed to communicate coherent conceptual structures, drawing inspiration from theories in narratology, semiotics, psycholinguistics and film.
Check out these Hot Narrative Hypermedia Projects:
List all Narrative Hypermedia Projects
Check out these Hot Narrative Hypermedia Technologies:
List all Narrative Hypermedia Technologies
List all Narrative Hypermedia Projects
Check out these Hot Narrative Hypermedia Technologies:
List all Narrative Hypermedia Technologies

