KMi Publications

Tech Reports

Tech Report kmi-04-10 Abstract


Modelling Agents Behaviour in Automated Negotiation
Techreport ID: kmi-04-10
Date: 2004
Author(s): Chongming Hou
Download PDF

This paper presents a learning mechanism that applies nonlinear regression analysis to model a negotiation agents behaviour based only on the opponent's previous offers. The behaviour of negotiation agents in this study is determined by their tactics in the form of decision functions. Heuristics based on estimates of an agents tactics are drawn from a series of experiments. By applying the nonlinear regression and the obtained heuristic knowledge, an agent can improve their overall performance by predicting the opponents deadline and reservation value, terminating pointless negotiation, and avoiding negotiation breakdown. The findings of this study show that this approach can be used to obtain better deals than previously proposed tactics. The learning mechanism can be used online, without any prior knowledge about the other agents and is therefore, very useful in open systems where agents have little or no information about each other.
 
KMi Publications
 

New Media Systems is...


Our New Media Systems research theme aims to show how new media devices, standards, architectures and concepts can change the nature of learning.

Our work involves the development of short life-cycle working prototypes of innovative technologies or concepts that we believe will influence the future of open learning within a 3-5 year timescale. Each new media concept is built into a working prototype of how the innovation may change a target community. The working prototypes are all available (in some form) from this website.

Our prototypes themselves are not designed solely for traditional Open Learning, but include a remit to show how that innovation can and will change learning at all levels and in all forms; in education, at work and play.