KMi Publications

Tech Reports

Tech Report kmi-05-14 Abstract


Extracting Domain Ontologies with CORDER
Techreport ID: kmi-05-14
Date: 2005
Author(s): Camilo Thorne, Jianhan Zhu, Victoria Uren
Download PDF

The CORDER web mining engine developed at the Knowledge Media Institute computes a lexical coocurrence network out of websites - a binary relation R. A natural extension of CORDER would be that of learning an ontology. However, our work shows that coocurrence proves insufficient to discover concepts and conceptual taxonomies (i.e. very simple ontologies) out of this network. To tackle this problem two unsupervised learning methods were studied based, on the one hand, on set similarity (and thus on a set-based representation of the data) and, on the other hand, on cosine similarity (and thus on a vector-space representation of the data). The underlying idea being that of taking into account, for the clustering, as features, their related coocurring entities (and thus the indirect links among the entities), as suggested, for instance, by O. Ferret. For the purposes of this study, we restricted ourselves to (solely) research areas. The most promising results in our experiments were given by the vector-space representation. To validate the results we used the ACM classification of computer science research areas as our gold standard.
 
KMi Publications
 

New Media Systems is...


Our New Media Systems research theme aims to show how new media devices, standards, architectures and concepts can change the nature of learning.

Our work involves the development of short life-cycle working prototypes of innovative technologies or concepts that we believe will influence the future of open learning within a 3-5 year timescale. Each new media concept is built into a working prototype of how the innovation may change a target community. The working prototypes are all available (in some form) from this website.

Our prototypes themselves are not designed solely for traditional Open Learning, but include a remit to show how that innovation can and will change learning at all levels and in all forms; in education, at work and play.