KMi Publications

Tech Reports

Tech Report kmi-06-17 Abstract


Relation Extraction for Semantic Intranet Annotations
Techreport ID: kmi-06-17
Date: 2006
Author(s): Lucia Specia, Claudio Baldassarre, Enrico Motta
Download PDF

We present an approach for ontology driven extraction of relations from texts aimed mainly to produce enriched semantic annotations for the Semantic Web. The approach exploits linguistic and empirical strategies, by means of a pipeline method involving processes such as a parser, part-of-speech tagger, named entity recognition system, and pattern-based classification, and resources including ontology, knowledge and lexical databases. A preliminary evaluation with 25 sentences showed that the use of knowledge intensive resources and strategies together with corpus-based techniques to process the input data allows identifying and discovering relevant relations between known and new entity pairs mentioned in the text. Besides semantic web annotations, the system can be used for other tasks, including ontology population, since it identifies new instantiations of existent relations and entities, and ontology learning, since it discovers new relations, which are not part of the ontology.
 
KMi Publications Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

New Media Systems is...


Our New Media Systems research theme aims to show how new media devices, standards, architectures and concepts can change the nature of learning.

Our work involves the development of short life-cycle working prototypes of innovative technologies or concepts that we believe will influence the future of open learning within a 3-5 year timescale. Each new media concept is built into a working prototype of how the innovation may change a target community. The working prototypes are all available (in some form) from this website.

Our prototypes themselves are not designed solely for traditional Open Learning, but include a remit to show how that innovation can and will change learning at all levels and in all forms; in education, at work and play.