KMi Publications

Tech Reports

Tech Report kmi-97-21 Abstract


Bayesian Inference with Missing Data Using Bound and Collapse
Techreport ID: kmi-97-21
Date: 1997
Author(s): Paola Sebastiani and Marco Ramoni
Download PDF

Current Bayesian methods to estimate conditional probabilities from samples with missing data pose serious problems of robustness and computational efficiency. This paper introduces a new method, called Bound and Collapse (BC), able to overcome these problems. When no information is available on the pattern of missing data, BC turns {em bounds} on the possible estimates consistent with the available information. These bounds can be then collapsed to a point estimate using information about the pattern of missing data, if any. Approximations of the variance and of the posterior distribution are proposed, and their accuracy is compared to approximations based on alternative methods in a real data set of polling data subject to non-response. 1. Department of Actuarial Science and Statistics, City University. 2. Knowledge Media Institute, The Open University.
 
KMi Publications
 

New Media Systems is...


Our New Media Systems research theme aims to show how new media devices, standards, architectures and concepts can change the nature of learning.

Our work involves the development of short life-cycle working prototypes of innovative technologies or concepts that we believe will influence the future of open learning within a 3-5 year timescale. Each new media concept is built into a working prototype of how the innovation may change a target community. The working prototypes are all available (in some form) from this website.

Our prototypes themselves are not designed solely for traditional Open Learning, but include a remit to show how that innovation can and will change learning at all levels and in all forms; in education, at work and play.