KMi Publications

Tech Reports

Tech Report KMI-06-01 Abstract


Exploiting Semantic Association To Answer Vague Queries
Techreport ID: KMI-06-01
Date: 2006
Author(s): Jianhan Zhu, Marc Eisenstadt, Dawei Song, Chris Denham
Download PDF

Although today's web search engines are very powerful, they still fail to provide intuitively relevant results for many types of queries, especially ones that are vaguely-formed in the user's own mind. We argue that associations between terms in a search query can reveal the underlying information needs in the users' mind and should be taken into account in search. We propose a multi-faceted approach to detect and exploit such associations. The CORDER method measures the association strength between query terms, and queries consisting of terms having low association strength with each other are seen as 'vague queries'. For a vague query, we use WordNet to find related terms of the query terms to compose extended queries, relying especially on the role of least common subsumers (LCS). We use relation strength between terms calculated by the CORDER method to refine these extended queries. Finally, we use the Hyperspace Analogue to Language (HAL) model and information flow (IF) method to expand these refined queries. Our initial experimental results on a corpus of 500 books from Amazon shows that our approach can find the right books for users given authentic vague queries, even in those cases where Google and Amazon's own book search fail.

Publication(s):

To appear in Proc. of The Fourth International Conference on Active Media Technology (AMT 2006), June 2006, Brisbane, Australia.
 
KMi Publications
 

Semantic Web and Knowledge Services is...


Semantic Web and Knowledge Services
"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation" (Berners-Lee et al., 2001).

Our research in the Semantic Web area looks at the potentials of fusing together advances in a range of disciplines, and applying them in a systemic way to simplify the development of intelligent, knowledge-based web services and to facilitate human access and use of knowledge available on the web. For instance, we are exploring ways in which tnatural language interfaces can be used to facilitate access to data distributed over different repositories. We are also developing infrastructures to support rapid development and deployment of semantic web services, which can be used to create web applications on-the-fly. We are also investigating ways in which semantic technology can support learning on the web, through a combination of knowledge representation support, pedagogical theories and intelligent content aggregation mechanisms. Finally, we are also investigating the Semantic Web itself as a domain of analysis and performing large scale empirical studies to uncover data about the concrete epistemologies which can be found on the Semantic Web. This exciting new area of research gives us concrete insights on the different conceptualizations that are present on the Semantic Web by giving us the possibility to discover which are the most common viewpoints, which viewpoints are mutually inconsistent, to what extent different models agree or disagree, etc...

Our aim is to be at the forefront of both theoretical and practical developments on the Semantic Web not only by developing theories and models, but also by building concrete applications, for a variety of domains and user communities, including KMi and the Open University itself.