KMi Publications

Tech Reports

Tech Report kmi-00-07 Abstract


Robust Outcome Prediction for Intensive-Care Patients
Techreport ID: kmi-00-07
Date: 2000
Author(s): Marco Ramoni, Paola Sebastiani and Richard Dybowski
Download PDF

Missing data are a major plague of medical databases in general, and of Intensive Care Units databases in particular. The time pressure of work in an Intensive Care Unit pushes the physicians to omit randomly or selectively record data. These different omission strategies give rise to different patterns of missing data and the recommended approach of completing the database using median imputation and fitting a logistic regression model can lead to significant biases. This paper applies a new classification method, called robust Bayes classifier, that does not rely on any particular assumption about the pattern of missing data and compares it to the median imputation approach using a database of 324 Intensive Care Unit patients. 1. Knowledge Media Institute, The Open University 2. Department ofÊMathematics, Imperial College of Science, Technology and Medicine 3. Department of Medicine, King's College London

Publication(s):

Also in Methods of Information in Medicine, 2000.
 
KMi Publications Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Semantic Web and Knowledge Services is...


Semantic Web and Knowledge Services
"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation" (Berners-Lee et al., 2001).

Our research in the Semantic Web area looks at the potentials of fusing together advances in a range of disciplines, and applying them in a systemic way to simplify the development of intelligent, knowledge-based web services and to facilitate human access and use of knowledge available on the web. For instance, we are exploring ways in which tnatural language interfaces can be used to facilitate access to data distributed over different repositories. We are also developing infrastructures to support rapid development and deployment of semantic web services, which can be used to create web applications on-the-fly. We are also investigating ways in which semantic technology can support learning on the web, through a combination of knowledge representation support, pedagogical theories and intelligent content aggregation mechanisms. Finally, we are also investigating the Semantic Web itself as a domain of analysis and performing large scale empirical studies to uncover data about the concrete epistemologies which can be found on the Semantic Web. This exciting new area of research gives us concrete insights on the different conceptualizations that are present on the Semantic Web by giving us the possibility to discover which are the most common viewpoints, which viewpoints are mutually inconsistent, to what extent different models agree or disagree, etc...

Our aim is to be at the forefront of both theoretical and practical developments on the Semantic Web not only by developing theories and models, but also by building concrete applications, for a variety of domains and user communities, including KMi and the Open University itself.