KMi Publications

Tech Reports

Tech Report kmi-00-09 Abstract


Scholarly Discourse as Computable Structure
Techreport ID: kmi-00-09
Date: 2000
Author(s): Simon Buckingham Shum, John Domingue and Enrico Motta
Download PDF

In their initial proposal for structural computing (SC), NŸrnberg et al. [18] point to hypertext argumentation systems as an example of an application domain in which structure is of first-order importance. In this paper we summarise the goals and implementation of a knowledge based hypertext environment called ScholOnto (for Scholarly Ontologies), which aims to provide researchers with computational support in representing and analysing the structure of scholarly claims, argumentation and perspectives. A specialised web server will provide a medium for researchers to contest the significance of concepts and emergent structures. In so doing, participants construct an evolving structure that reflects a community's understandings of its field, and which can support computational services for scholars. Using structural analyses of scholarly argumentation, we consider the connections with structural computing, and propose a number of requirements for generic SC environments.

Publication(s):

Second International Workshop on Structural Computing, San Antonio, Texas, June 3, 2000. ACM Hypertext 2000 [www.ht00.org]
 
KMi Publications
 

Semantic Web and Knowledge Services is...


Semantic Web and Knowledge Services
"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation" (Berners-Lee et al., 2001).

Our research in the Semantic Web area looks at the potentials of fusing together advances in a range of disciplines, and applying them in a systemic way to simplify the development of intelligent, knowledge-based web services and to facilitate human access and use of knowledge available on the web. For instance, we are exploring ways in which tnatural language interfaces can be used to facilitate access to data distributed over different repositories. We are also developing infrastructures to support rapid development and deployment of semantic web services, which can be used to create web applications on-the-fly. We are also investigating ways in which semantic technology can support learning on the web, through a combination of knowledge representation support, pedagogical theories and intelligent content aggregation mechanisms. Finally, we are also investigating the Semantic Web itself as a domain of analysis and performing large scale empirical studies to uncover data about the concrete epistemologies which can be found on the Semantic Web. This exciting new area of research gives us concrete insights on the different conceptualizations that are present on the Semantic Web by giving us the possibility to discover which are the most common viewpoints, which viewpoints are mutually inconsistent, to what extent different models agree or disagree, etc...

Our aim is to be at the forefront of both theoretical and practical developments on the Semantic Web not only by developing theories and models, but also by building concrete applications, for a variety of domains and user communities, including KMi and the Open University itself.