KMi Publications

Tech Reports

Tech Report kmi-03-10 Abstract


Event Recognition using Information Extraction Techniques
Techreport ID: kmi-03-10
Date: 2003
Author(s): Maria Vargas-Vera, David Celjuska
Download PDF

This paper describes a system which recognizes events on stories. Our system classifies stories and populates a KMi Planet ontology with new instances of classes defined in it. Currently, the system recognizes events which can be classified as belonging to a single category and it also recognizes overlapping events (more than one event is recognized in the story). In each case, the system provides a confidence value associated to the suggested classification. In our event recognition system we use Information Extraction and Machine Learning technologies. We have tested this system using an archive of stories describing the academic life of our institution (these stories describe events such as an project award, publications, visits, etc.)
 
KMi Publications Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Semantic Web and Knowledge Services is...


Semantic Web and Knowledge Services
"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation" (Berners-Lee et al., 2001).

Our research in the Semantic Web area looks at the potentials of fusing together advances in a range of disciplines, and applying them in a systemic way to simplify the development of intelligent, knowledge-based web services and to facilitate human access and use of knowledge available on the web. For instance, we are exploring ways in which tnatural language interfaces can be used to facilitate access to data distributed over different repositories. We are also developing infrastructures to support rapid development and deployment of semantic web services, which can be used to create web applications on-the-fly. We are also investigating ways in which semantic technology can support learning on the web, through a combination of knowledge representation support, pedagogical theories and intelligent content aggregation mechanisms. Finally, we are also investigating the Semantic Web itself as a domain of analysis and performing large scale empirical studies to uncover data about the concrete epistemologies which can be found on the Semantic Web. This exciting new area of research gives us concrete insights on the different conceptualizations that are present on the Semantic Web by giving us the possibility to discover which are the most common viewpoints, which viewpoints are mutually inconsistent, to what extent different models agree or disagree, etc...

Our aim is to be at the forefront of both theoretical and practical developments on the Semantic Web not only by developing theories and models, but also by building concrete applications, for a variety of domains and user communities, including KMi and the Open University itself.