Tech Reports
Tech Report kmi-96-09 Abstract
Robust Parameter Learning in Bayesian Networks with Missing Data
Techreport ID: kmi-96-09
Date: 1996
Author(s): Marco Ramoni and Paola Sebastiani
Bayesian belief Networks (BBNs) are a powerful formalism for knowledge representation and reasoning under uncertainty. During the past few years, Artificial Intelligence met Statistics in the quest to develop effective methods to learn BBNs directly from real-world databases. Unfortunately, real-world databases include missing and/or unreported data whose presence challenges traditional learning techniques, from both the theoretical and computational point of view. This paper outlines a new method to learn the probabilities defining a BBNs from incomplete databases. The basic assumption of this method is that the BBN generated by the learning process should enable the problem solver to reason and make decisions on the basis of the currently available information. This assumption requires the learning method to return results whose precision is a monotonic increasing function of the available information. The intuition behind our method is close to the robust sensitivity analysis interpretation of probability: the method computes the convex set of possible distributions defined by the available information and proceeds by refining this set as more information becomes available. Finally, experimental results will be presented comparing this approach to a popular Monte Carlo method. 1. Knowledge Media Institute, The Open University. 2. Department of Actuarial Science and Statistics, City University.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Semantic Web and Knowledge Services is...

Our research in the Semantic Web area looks at the potentials of fusing together advances in a range of disciplines, and applying them in a systemic way to simplify the development of intelligent, knowledge-based web services and to facilitate human access and use of knowledge available on the web. For instance, we are exploring ways in which tnatural language interfaces can be used to facilitate access to data distributed over different repositories. We are also developing infrastructures to support rapid development and deployment of semantic web services, which can be used to create web applications on-the-fly. We are also investigating ways in which semantic technology can support learning on the web, through a combination of knowledge representation support, pedagogical theories and intelligent content aggregation mechanisms. Finally, we are also investigating the Semantic Web itself as a domain of analysis and performing large scale empirical studies to uncover data about the concrete epistemologies which can be found on the Semantic Web. This exciting new area of research gives us concrete insights on the different conceptualizations that are present on the Semantic Web by giving us the possibility to discover which are the most common viewpoints, which viewpoints are mutually inconsistent, to what extent different models agree or disagree, etc...
Our aim is to be at the forefront of both theoretical and practical developments on the Semantic Web not only by developing theories and models, but also by building concrete applications, for a variety of domains and user communities, including KMi and the Open University itself.
Check out these Hot Semantic Web and Knowledge Services Projects:
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies

