Tech Reports
Tech Report kmi-97-09 Abstract
Discovering Bayesian Networks in Incomplete Databases
Techreport ID: kmi-97-09
Date: 1997
Author(s): Marco Ramoni and Paola Sebastiani
Bayesian Belief Networks (BBNs) are becoming increasingly popular in the Knowledge Discovery and Data Mining community. A BBN is defined by a graphical structure of conditional dependencies among the domain variables and a set of probability distributions defining these dependencies. In this way, BBNs provide a compact formalism - grounded in the well-developed mathematics of probability theory - able to predict variable values, explain observations, and visualize dependencies among variables. During the past few years, several efforts have been addressed to develop methods able to extract both the graphical structure and the conditional probabilities of a BBN from a database. All these methods share the assumption that the database at hand is complete, that is, it does not report any entry as unknown. When this assumption fails, these methods have to resort to expensive iterative procedures which are infeasible for large databases. This paper describes a new Knowledge Discovery system based on an efficient method able to extract the graphical structure and the probability distributions of a BBN from possibly incomplete databases. An application using a large real-world database will illustrate methods and concepts underlying the system and will assess its advantages as a Knowledge Discovery system. 1. Knowledge Media Institute, The Open University. 2. Department of Actuarial Science and Statistics, City University.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Semantic Web and Knowledge Services is...

Our research in the Semantic Web area looks at the potentials of fusing together advances in a range of disciplines, and applying them in a systemic way to simplify the development of intelligent, knowledge-based web services and to facilitate human access and use of knowledge available on the web. For instance, we are exploring ways in which tnatural language interfaces can be used to facilitate access to data distributed over different repositories. We are also developing infrastructures to support rapid development and deployment of semantic web services, which can be used to create web applications on-the-fly. We are also investigating ways in which semantic technology can support learning on the web, through a combination of knowledge representation support, pedagogical theories and intelligent content aggregation mechanisms. Finally, we are also investigating the Semantic Web itself as a domain of analysis and performing large scale empirical studies to uncover data about the concrete epistemologies which can be found on the Semantic Web. This exciting new area of research gives us concrete insights on the different conceptualizations that are present on the Semantic Web by giving us the possibility to discover which are the most common viewpoints, which viewpoints are mutually inconsistent, to what extent different models agree or disagree, etc...
Our aim is to be at the forefront of both theoretical and practical developments on the Semantic Web not only by developing theories and models, but also by building concrete applications, for a variety of domains and user communities, including KMi and the Open University itself.
Check out these Hot Semantic Web and Knowledge Services Projects:
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies



