KMi Publications

Tech Reports

Tech Report kmi-00-07 Abstract


Robust Outcome Prediction for Intensive-Care Patients
Techreport ID: kmi-00-07
Date: 2000
Author(s): Marco Ramoni, Paola Sebastiani and Richard Dybowski
Download PDF

Missing data are a major plague of medical databases in general, and of Intensive Care Units databases in particular. The time pressure of work in an Intensive Care Unit pushes the physicians to omit randomly or selectively record data. These different omission strategies give rise to different patterns of missing data and the recommended approach of completing the database using median imputation and fitting a logistic regression model can lead to significant biases. This paper applies a new classification method, called robust Bayes classifier, that does not rely on any particular assumption about the pattern of missing data and compares it to the median imputation approach using a database of 324 Intensive Care Unit patients. 1. Knowledge Media Institute, The Open University 2. Department ofÊMathematics, Imperial College of Science, Technology and Medicine 3. Department of Medicine, King's College London

Publication(s):

Also in Methods of Information in Medicine, 2000.
 
KMi Publications
 

Social Software is...


Social Software
Social Software can be thought of as "software which extends, or derives added value from, human social behaviour - message boards, musical taste-sharing, photo-sharing, instant messaging, mailing lists, social networking."

Interacting with other people not only forms the core of human social and psychological experience, but also lies at the centre of what makes the internet such a rich, powerful and exciting collection of knowledge media. We are especially interested in what happens when such interactions take place on a very large scale -- not only because we work regularly with tens of thousands of distance learners at the Open University, but also because it is evident that being part of a crowd in real life possesses a certain 'buzz' of its own, and poses a natural challenge. Different nuances emerge in different user contexts, so we choose to investigate the contexts of work, learning and play to better understand the trade-offs involved in designing effective large-scale social software for multiple purposes.