KMi Publications

Tech Reports

Tech Report kmi-00-14 Abstract


Feature Reduction for Document Clustering and Classification
Techreport ID: kmi-00-14
Date: 2000
Author(s): Stefan Rüger and Susan Gauch
Download PDF

Often users receive search results which contain a wide range of documents, only some of which are relevant to their information needs. To address this problem, ever more systems not only locate information for users, but also organise that information on their behalf. We look at two main automatic approaches to information organisation: interactive clustering of search results and pre-categorising documents to provide hierarchical browsing structures. To be feasible in real world applications, both of these approaches require accurate yet efficient algorithms. Yet, both suffer from the curse of dimensionality - documents are typically represented by hundreds or thousands of words (features) which must be analysed and processed during clustering or classification. In this paper, we discuss feature reduction techniques and their application to document clustering and classification, showing that feature reduction improves efficiency as well as accuracy. We validate these algorithms using human relevance assignments and categorisation.

Publication(s):

DTR 2000/8, Department of Computing, Imperial College London
 
KMi Publications Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Social Software is...


Social Software
Social Software can be thought of as "software which extends, or derives added value from, human social behaviour - message boards, musical taste-sharing, photo-sharing, instant messaging, mailing lists, social networking."

Interacting with other people not only forms the core of human social and psychological experience, but also lies at the centre of what makes the internet such a rich, powerful and exciting collection of knowledge media. We are especially interested in what happens when such interactions take place on a very large scale -- not only because we work regularly with tens of thousands of distance learners at the Open University, but also because it is evident that being part of a crowd in real life possesses a certain 'buzz' of its own, and poses a natural challenge. Different nuances emerge in different user contexts, so we choose to investigate the contexts of work, learning and play to better understand the trade-offs involved in designing effective large-scale social software for multiple purposes.