KMi Publications

Tech Reports

Tech Report kmi-06-17 Abstract


Relation Extraction for Semantic Intranet Annotations
Techreport ID: kmi-06-17
Date: 2006
Author(s): Lucia Specia, Claudio Baldassarre, Enrico Motta
Download PDF

We present an approach for ontology driven extraction of relations from texts aimed mainly to produce enriched semantic annotations for the Semantic Web. The approach exploits linguistic and empirical strategies, by means of a pipeline method involving processes such as a parser, part-of-speech tagger, named entity recognition system, and pattern-based classification, and resources including ontology, knowledge and lexical databases. A preliminary evaluation with 25 sentences showed that the use of knowledge intensive resources and strategies together with corpus-based techniques to process the input data allows identifying and discovering relevant relations between known and new entity pairs mentioned in the text. Besides semantic web annotations, the system can be used for other tasks, including ontology population, since it identifies new instantiations of existent relations and entities, and ontology learning, since it discovers new relations, which are not part of the ontology.
 
KMi Publications Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Social Software is...


Social Software
Social Software can be thought of as "software which extends, or derives added value from, human social behaviour - message boards, musical taste-sharing, photo-sharing, instant messaging, mailing lists, social networking."

Interacting with other people not only forms the core of human social and psychological experience, but also lies at the centre of what makes the internet such a rich, powerful and exciting collection of knowledge media. We are especially interested in what happens when such interactions take place on a very large scale -- not only because we work regularly with tens of thousands of distance learners at the Open University, but also because it is evident that being part of a crowd in real life possesses a certain 'buzz' of its own, and poses a natural challenge. Different nuances emerge in different user contexts, so we choose to investigate the contexts of work, learning and play to better understand the trade-offs involved in designing effective large-scale social software for multiple purposes.