Tech Reports
Tech Report kmi-11-02 Abstract
Unsupervised data linking using a genetic algorithm
Techreport ID: kmi-11-02
Date: 2011
Author(s): Andriy Nikolov,Mathieu d'Aquin,Enrico Motta
As commonly accepted identifiers for data instances in semantic datasets (such as ISBN codes or DOI identifiers) are often not available, discovering links between overlapping datasets on the Web is generally realised through the use of fuzzy similarity measures. Configuring such measures, i.e. deciding which similarity function to apply to which data properties with which parameters, is often a non-trivial task that depends on the domain, ontological schemas, and formatting conventions in data. Existing solutions either rely on the user's knowledge of the data and the domain or on the use of machine learning to discover these parameters based on training data. In this report, we present a novel approach to tackle the issue of data linking which relies on the unsupervised discovery of the required similarity parameters. Instead of using labeled training data, the method takes into account several desired properties which the distribution of output similarity values should satisfy. The method includes these features into a fitness criterion used in a genetic algorithm to establish similarity parameters that maximise the quality of the resulting linkset according to the considered properties. We show in experiments using benchmarks as well as real-world datasets that such an unsupervised method can reach the same levels of performance as manually engineered methods, and how the different parameters of the genetic algorithm and the fitness criterion affect the results for different datasets.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Social Software is...

Interacting with other people not only forms the core of human social and psychological experience, but also lies at the centre of what makes the internet such a rich, powerful and exciting collection of knowledge media. We are especially interested in what happens when such interactions take place on a very large scale -- not only because we work regularly with tens of thousands of distance learners at the Open University, but also because it is evident that being part of a crowd in real life possesses a certain 'buzz' of its own, and poses a natural challenge. Different nuances emerge in different user contexts, so we choose to investigate the contexts of work, learning and play to better understand the trade-offs involved in designing effective large-scale social software for multiple purposes.
Check out these Hot Social Software Projects:
List all Social Software Projects
Check out these Hot Social Software Technologies:
List all Social Software Technologies
List all Social Software Projects
Check out these Hot Social Software Technologies:
List all Social Software Technologies



