KMi Seminars
Fusing Automatically Extracted Semantic Annotations
This event took place on Wednesday 26 July 2006 at 11:30

 
Andriy Nikolov Computing Research Centre, The Open University, UK

The necessary precondition of the Semantic Web initiative is the availability of semantic data. Information, which at the moment is intended for human users, must be translated into a machine-readable format (RDF). Such a translation process is called semantic annotation. The amount of information on the Web makes it impossible to solve the annotation task manually. So the usage of automatic information extraction algorithms is essential. These algorithms use various natural language processing and machine learning techniques to extract information from text. The information extracted from different sources must then be integrated in a knowledge base, so that it can be queried in a uniform way. This integration process is called knowledge fusion. However, performing knowledge fusion encounters a number of problems. The origins of these problems are the following: 1. Inaccuracy of existing information extraction algorithms leads to appearance of incorrect annotations. 2. Information contained on the web pages can be imprecise, incomplete or vague. 3. Multiple sources can contradict each other. Thus, in order to perform large-scale automatic annotation it is necessary to implement a knowledge fusion procedure, which is able to deal with these problems.

 
KMi Seminars
 

Knowledge Management is...


Knowledge Management
Creating learning organisations hinges on managing knowledge at many levels. Knowledge can be provided by individuals or it can be created as a collective effort of a group working together towards a common goal, it can be situated as "war stories" or it can be generalised as guidelines, it can be described informally as comments in a natural language, pictures and technical drawings or it can be formalised as mathematical formulae and rules, it can be expressed explicitly or it can be tacit, embedded in the work product. The recipient of knowledge - the learner - can be an individual or a work group, professionals, university students, schoolchildren or informal communities of interest.
Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.