Using the Semantic Web as Background Knowledge for Ontology Mapping
This event took place on Wednesday 15 November 2006 at 12:15
Dr. Marta Sabou KMi, The Open University
While current approaches to ontology mapping produce good results by mainly relying on label and structure based similarity measures, there are several cases in which they fail to discover important mappings. In this paper we describe a novel approach to ontology mapping, which is able to avoid this limitation by using background knowledge. Existing approaches relying on background knowledge typically have one or both of two key limitations: 1) they rely on a manually selected reference ontology; 2) they suffer from the noise introduced by the use of semi-structured sources, such as text corpora. Our technique circumvents these limitations by exploiting the increasing amount of semantic
resources available online. As a result, there is no need either
for a manually selected reference ontology (the relevant ontologies are dynamically selected from an online ontology repository), or for transforming background knowledge in an ontological form. The promising results from experiments on two real life thesauri indicate both that our approach has a high precision and also that it can find mappings, which are typically missed by existing approaches.
Download presentation slides
This event took place on Wednesday 15 November 2006 at 12:15
While current approaches to ontology mapping produce good results by mainly relying on label and structure based similarity measures, there are several cases in which they fail to discover important mappings. In this paper we describe a novel approach to ontology mapping, which is able to avoid this limitation by using background knowledge. Existing approaches relying on background knowledge typically have one or both of two key limitations: 1) they rely on a manually selected reference ontology; 2) they suffer from the noise introduced by the use of semi-structured sources, such as text corpora. Our technique circumvents these limitations by exploiting the increasing amount of semantic
resources available online. As a result, there is no need either
for a manually selected reference ontology (the relevant ontologies are dynamically selected from an online ontology repository), or for transforming background knowledge in an ontological form. The promising results from experiments on two real life thesauri indicate both that our approach has a high precision and also that it can find mappings, which are typically missed by existing approaches.
Download presentation slides
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Knowledge Management is...

Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.
Check out these Hot Knowledge Management Projects:
List all Knowledge Management Projects
Check out these Hot Knowledge Management Technologies:
List all Knowledge Management Technologies
List all Knowledge Management Projects
Check out these Hot Knowledge Management Technologies:
List all Knowledge Management Technologies

