KMi Seminars
Local Similarity Search for Content-based Image Retrieval
This event took place on Wednesday 29 November 2006 at 11:30

 
Peter Howarth Imperial College London, and KMi, The Open University

The goal of content-based image retrieval (CBIR) is to provide the user with a way to browse or retrieve images from large collections based on visual similarity. At the heart of any CBIR system are visual features that have been extracted from images and (dis)similarity functions that are used to quantify the similarity between these features. The combination of these two components will drive the overall performance of a system.

Two frequently studied research areas in CBIR are maximising retrieval performance using similarity measures and improving the efficiency and speed of search by applying indexing methods. Often these are mutually exclusive. The best performing similarity measures are usually computationally expensive and the optimal indexing approaches can place many restrictions on what features and similarity functions can be used.

In this talk we investigate how to localise the measurement of similarity. That is, emphasise points that are close to the query in some subspace of the full feature space. We show that this has dual benefits for CBIR, both improving retrieval performance and speeding up the search of high-dimensional features.

 
KMi Seminars
 

Knowledge Management is...


Knowledge Management
Creating learning organisations hinges on managing knowledge at many levels. Knowledge can be provided by individuals or it can be created as a collective effort of a group working together towards a common goal, it can be situated as "war stories" or it can be generalised as guidelines, it can be described informally as comments in a natural language, pictures and technical drawings or it can be formalised as mathematical formulae and rules, it can be expressed explicitly or it can be tacit, embedded in the work product. The recipient of knowledge - the learner - can be an individual or a work group, professionals, university students, schoolchildren or informal communities of interest.
Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.