KMi Seminars
Towards Adaptive Information Retrieval - Step 1: Collecting Real Data
This event took place on Friday 25 May 2007 at 11:30

 
Udo Kruschwitz University of Essex, Department of Computer Science, Wivenhoe Park, Colchester

One of the most exciting areas of research in search engine technology and information retrieval is the move towards "adaptive" search systems. A particularly promising aspect of this wide field is to move log analysis right in the centre of attention. The challenge is to exploit the user interaction (as recorded in the log files) to make the search system adapt to the users' search behaviour. Instead of looking at the Web in general we are interested in smaller document collections with a more limited range of topics.

We are focusing on a search paradigm where automatically extracted domain knowledge is incorporated in a simple dialogue system in order to assist users in the search process. The challenge is to mine the log files in order to automatically improve the suggestions made by the system, in other words to "adapt" to the users' search behaviour. We are interested in a specific aspect of this search behaviour, namely the selection of query modification terms which provides us with "implicit feedback" from the users and should be sufficient to come up with a model to automatically adjust the domain knowledge without having to rely on other forms of explicit or implicit user feedback.

This whole process requires real data. We have made a start by running a prototype of our own search system that combines a standard search engine with automatically extracted domain knowledge. The system has been running on the University of Essex intranet for nearly a year now and we have collected more than 35,000 queries. The log files we keep collecting are an extremely valuable resource because they are a reflection of real user interests (different to TREC like scenarios which are always somewhat artificial). The data collected so far are a justification for a system that guides a user in the search process: more than 10% of user queries are query modification steps, i.e. the user either replaces the initial query or adds terms to the query to make it more specific. Adding a term happens more often than replacing the query with a completely new one. We also observe that a user is more likely to select one of the suggestions made by our search engine than modifying the query manually.

The talk will focus on our ongoing research and present some analysis of
the log files collected so far.

 
KMi Seminars Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Knowledge Management is...


Knowledge Management
Creating learning organisations hinges on managing knowledge at many levels. Knowledge can be provided by individuals or it can be created as a collective effort of a group working together towards a common goal, it can be situated as "war stories" or it can be generalised as guidelines, it can be described informally as comments in a natural language, pictures and technical drawings or it can be formalised as mathematical formulae and rules, it can be expressed explicitly or it can be tacit, embedded in the work product. The recipient of knowledge - the learner - can be an individual or a work group, professionals, university students, schoolchildren or informal communities of interest.
Our aim is to capture, analyse and organise knowledge, regardless of its origin and form and make it available to the learner when needed presented with the necessary context and in a form supporting the learning processes.