KMi Seminars
Bridging the Gap Between Folksonomies and the Semantic Web
This event took place on Monday 21 May 2007 at 14:00

 
Sofia Angeletou KMi

While folksonomies allow tagging of similar resources with a variety of tags, their content retrieval mechanisms are severely hampered by being agnostic to the relations that exist between these tags. To overcome this limitation, several methods have been proposed to find groups of implicitly inter-related tags. We believe that content retrieval can be further improved by making the relations between tags explicit. In this paper we propose the semantic enrichment of folksonomy tags with explicit relations by harvesting the Semantic Web, i.e., dynamically selecting and combining relevant bits of knowledge from online ontologies. Our experimental results show that, while semantic enrichment needs to be aware of the particular characteristics of folksonomies and the Semantic Web, it is beneficial for both.

 
KMi Seminars Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Multimedia and Information Systems is...


Multimedia and Information Systems
Our research is centred around the theme of Multimedia Information Retrieval, ie, Video Search Engines, Image Databases, Spoken Document Retrieval, Music Retrieval, Query Languages and Query Mediation.

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.

Visit the MMIS website