Information-Theoretic Semantic Multimedia Indexing
This event took place on Wednesday 27 June 2007 at 11:30
Joćo Magalhćes Imperial College London, and KMi, The Open University
To solve the problem of indexing collections with diverse text documents, image documents, or documents with both text and images, one needs to develop a model that supports heterogeneous types of documents.
In this paper, we show how information theory supplies us with the tools necessary to develop a unique model for text, image, and text/image retrieval. In our approach, for each possible query keyword we estimate a maximum entropy model based on exclusively continuous features that were pre-processed. The unique continuous feature-space of text and visual data is constructed by using a minimum description length criterion to find the optimal feature-space representation (optimal from an information theory point of view). We evaluate our approach in three
experiments: only text retrieval, only image retrieval, and text combined with image retrieval.
This event took place on Wednesday 27 June 2007 at 11:30
To solve the problem of indexing collections with diverse text documents, image documents, or documents with both text and images, one needs to develop a model that supports heterogeneous types of documents.
In this paper, we show how information theory supplies us with the tools necessary to develop a unique model for text, image, and text/image retrieval. In our approach, for each possible query keyword we estimate a maximum entropy model based on exclusively continuous features that were pre-processed. The unique continuous feature-space of text and visual data is constructed by using a minimum description length criterion to find the optimal feature-space representation (optimal from an information theory point of view). We evaluate our approach in three
experiments: only text retrieval, only image retrieval, and text combined with image retrieval.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Multimedia and Information Systems is...

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.
Visit the MMIS website
Check out these Hot Multimedia and Information Systems Projects:
List all Multimedia and Information Systems Projects
Check out these Hot Multimedia and Information Systems Technologies:
List all Multimedia and Information Systems Technologies
List all Multimedia and Information Systems Projects
Check out these Hot Multimedia and Information Systems Technologies:
List all Multimedia and Information Systems Technologies



