KMi Seminars
Conceptual Situation Spaces for Situation-Driven Processes
This event took place on Wednesday 21 May 2008 at 11:30

Dr. Stefan Dietze Knowledge Media Institute (KMi)

Context-awareness is a highly desired feature across several application domains. Semantic Web Services (SWS) technologies address context-adaptation by enabling the automatic discovery of distributed Web services for a given task based on comprehensive semantic representations. Whereas SWS technology supports the allocation of resources based on semantics, it does not entail the discovery of appropriate SWS representations for a given situation. Describing the complex notion of a situation in all its facets through symbolic SWS representation facilities is a costly task which may never lead to semantic completeness and introduces ambiguity issues. Moreover, even though not any real-world situation completely equals another, it has to be matched to a finite set of parameter descriptions within SWS representations to enable context-adaptability. To overcome these issues, we propose Conceptual Situation Spaces (CSS) to facilitate the description of situation characteristics as members in geometrical vector spaces following the idea of Conceptual Spaces. CSS enable fuzzy similarity-based matchmaking between real-world situation characteristics and predefined situation descriptions. Following our vision, the latter are part of semantic Situation-Driven Process (SDP) descriptions, which define a composition of SWS Goals suitable to support the course of an evolving situation. Particularly, we refer to the WSMO approach for SWS. Consequently, our approach extends the expressiveness of WSMO by enabling the automatic discovery, composition and execution of achievable goals for a given situation. To prove the feasibility, we provide a proof-of-concept prototype.

 
KMi Seminars Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Multimedia and Information Systems is...


Multimedia and Information Systems
Our research is centred around the theme of Multimedia Information Retrieval, ie, Video Search Engines, Image Databases, Spoken Document Retrieval, Music Retrieval, Query Languages and Query Mediation.

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.

Visit the MMIS website