ESpotter: A Domain and User Adaptation Approach for Named Entity Recognition on the Web
This event took place on Monday 14 June 2004 at 12:30
Jianhan Zhu
Named entity recognition (NER) systems are commonly designed with a "one-size-fits-all" philosophy. Lexicons and patterns manually crafted or learned from a training set of documents are applied to any other document without taking into account its background and user needs. However, when applying NER to Web pages, due to the diversity of these Web pages and user needs, one size frequently does not fit all. In this talk, I present a system called ESpotter, which improves NER on the Web by adapting lexicons and patterns to domains on the Web and user preferences. My results show that ESpotteqr provides more accurate and efficient NER on Web pages from various domains than current NER systems. ESpotter is implemented as a browser plug-in to help solve the information overload problem on the Web by discovering relevant information on user's behalf. Further work of integrating ESpotter with ontology based semantic browsing tool, Magpie, and the KMi semantic Web site are explored.
Download PowerPoint Presentation (755 KB ZIP file)
This event took place on Monday 14 June 2004 at 12:30
Named entity recognition (NER) systems are commonly designed with a "one-size-fits-all" philosophy. Lexicons and patterns manually crafted or learned from a training set of documents are applied to any other document without taking into account its background and user needs. However, when applying NER to Web pages, due to the diversity of these Web pages and user needs, one size frequently does not fit all. In this talk, I present a system called ESpotter, which improves NER on the Web by adapting lexicons and patterns to domains on the Web and user preferences. My results show that ESpotteqr provides more accurate and efficient NER on Web pages from various domains than current NER systems. ESpotter is implemented as a browser plug-in to help solve the information overload problem on the Web by discovering relevant information on user's behalf. Further work of integrating ESpotter with ontology based semantic browsing tool, Magpie, and the KMi semantic Web site are explored.
Download PowerPoint Presentation (755 KB ZIP file)
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Multimedia and Information Systems is...

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.
Visit the MMIS website
Check out these Hot Multimedia and Information Systems Projects:
List all Multimedia and Information Systems Projects
Check out these Hot Multimedia and Information Systems Technologies:
List all Multimedia and Information Systems Technologies
List all Multimedia and Information Systems Projects
Check out these Hot Multimedia and Information Systems Technologies:
List all Multimedia and Information Systems Technologies



