Compound Classification Models for Recommender Systems
This event took place on Friday 19 May 2006 at 15:00
Prof. Dr. Dr. Lars Schmidt-Thieme University of Freiburg
Recommender systems recommend products to customers based on ratings or past customer behavior. Without any information about attributes of the products or customers involved, the problem has been tackled most successfully by a nearest neighbor method called collaborative filtering in the context, while additional efforts invested in building classification models did not pay off and did not increase the quality. Therefore, classification methods have mainly been used in conjunction with product or customer attributes.
Starting from a view on the plain recommendation task without attributes as a multi-class classification problem, we investigate two particularities, its autocorrelation structure as well as the absence of re-occurring items (repeat buying). We adapt the standard generic reductions 1-vs-rest and 1-vs-1 of multi-class problems to a set of binary classification problems to these particularities and thereby provide a generic compound classifier for recommender systems. We evaluate a particular specialization thereof using linear support vector machines as member classifiers on MovieLens data and show that it outperforms state-of-the-art methods, i.e., item-based collaborative filtering.
This event took place on Friday 19 May 2006 at 15:00
Prof. Dr. Dr. Lars Schmidt-Thieme University of Freiburg
Recommender systems recommend products to customers based on ratings or past customer behavior. Without any information about attributes of the products or customers involved, the problem has been tackled most successfully by a nearest neighbor method called collaborative filtering in the context, while additional efforts invested in building classification models did not pay off and did not increase the quality. Therefore, classification methods have mainly been used in conjunction with product or customer attributes.
Starting from a view on the plain recommendation task without attributes as a multi-class classification problem, we investigate two particularities, its autocorrelation structure as well as the absence of re-occurring items (repeat buying). We adapt the standard generic reductions 1-vs-rest and 1-vs-1 of multi-class problems to a set of binary classification problems to these particularities and thereby provide a generic compound classifier for recommender systems. We evaluate a particular specialization thereof using linear support vector machines as member classifiers on MovieLens data and show that it outperforms state-of-the-art methods, i.e., item-based collaborative filtering.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Multimedia and Information Systems is...

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.
Visit the MMIS website
Check out these Hot Multimedia and Information Systems Projects:
List all Multimedia and Information Systems Projects
Check out these Hot Multimedia and Information Systems Technologies:
List all Multimedia and Information Systems Technologies
List all Multimedia and Information Systems Projects
Check out these Hot Multimedia and Information Systems Technologies:
List all Multimedia and Information Systems Technologies



