KMi Seminars
Using the Semantic Web as Background Knowledge for Ontology Mapping
This event took place on Wednesday 15 November 2006 at 12:15

 
Dr. Marta Sabou KMi, The Open University

While current approaches to ontology mapping produce good results by mainly relying on label and structure based similarity measures, there are several cases in which they fail to discover important mappings. In this paper we describe a novel approach to ontology mapping, which is able to avoid this limitation by using background knowledge. Existing approaches relying on background knowledge typically have one or both of two key limitations: 1) they rely on a manually selected reference ontology; 2) they suffer from the noise introduced by the use of semi-structured sources, such as text corpora. Our technique circumvents these limitations by exploiting the increasing amount of semantic
resources available online. As a result, there is no need either
for a manually selected reference ontology (the relevant ontologies are dynamically selected from an online ontology repository), or for transforming background knowledge in an ontological form. The promising results from experiments on two real life thesauri indicate both that our approach has a high precision and also that it can find mappings, which are typically missed by existing approaches.

Download presentation slides

 
KMi Seminars
 

Multimedia and Information Systems is...


Multimedia and Information Systems
Our research is centred around the theme of Multimedia Information Retrieval, ie, Video Search Engines, Image Databases, Spoken Document Retrieval, Music Retrieval, Query Languages and Query Mediation.

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.

Visit the MMIS website