KMi Seminars
Uncertainty Handling in the Context of Ontology Mapping for Question-Answering
This event took place on Wednesday 17 January 2007 at 11:30

 
Miklos Nagy KMi, The Open University

The combination of different similarity methods in the current ontology mapping approaches can considerably increase the quality of the mappings however uncertainty caused by incomplete or inconsistent data has received relatively little attention in the ontology mapping community. This paper describes a framework for integrating similarity measures and Dempster-Shafer belief functions for ontology mapping in the context of multi agent ontology mapping. Our novel approach describes how to incorporate uncertainty which is inherent to the ontology mapping process, and utilize the Dempster-Shafer model for dealing with incomplete and uncertain information produced during the mapping and combination in order to improve the correctness of the mapping. Our main objective was to assess how applying the belief function can improve correctness of the ontology mapping through combining the similarities which were originally created by both syntactic and semantic similarity algorithms. We have participated and carried out experiments with the data sets of the Ontology Alignment Evaluation Initiative 2006 which served as a test bed to assess both the strong and weak points of our system. The experiments confirm that our algorithm performs well with both concept and property names.

Download presentation slides (zip format)

 
KMi Seminars
 

Multimedia and Information Systems is...


Multimedia and Information Systems
Our research is centred around the theme of Multimedia Information Retrieval, ie, Video Search Engines, Image Databases, Spoken Document Retrieval, Music Retrieval, Query Languages and Query Mediation.

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.

Visit the MMIS website