Musical Genre Classification and Musical Similarity Determination from Audio
This event took place on Thursday 10 May 2007 at 11:30
Professor Stephen Cox School of Computing Sciences, University of East Anglia, Norwich, UK
Recently, there has been a revolution in the way that music has been delivered to users. The universal availability of broadband to the home and the development of cheap, high-capacity MP3 players has led to an exponential growth in music distribution over the internet, and to the emergence of large personal collections of songs held on users computers and players. This in turn has led to a need for effective techniques for organising, browsing and visualising music collections and generating playlists. Although metadata giving details of e.g. the track title, the album, the artists etc. is available for much of the music available on the web, it is not universal, and this data is usually not detailed enough to implement the above techniques to a high standard. We have been investigating techniques for automatically classifying the genre of a song and measuring the similarity of two songs using only the audio signal. I will describe our approach to these two related tasks, and present results that suggest it is possible to perform them with reasonable accuracy. I will also demonstrate our musical similarity software that suggests songs similar to an input song from a 5000 song collection.
This event took place on Thursday 10 May 2007 at 11:30
Recently, there has been a revolution in the way that music has been delivered to users. The universal availability of broadband to the home and the development of cheap, high-capacity MP3 players has led to an exponential growth in music distribution over the internet, and to the emergence of large personal collections of songs held on users computers and players. This in turn has led to a need for effective techniques for organising, browsing and visualising music collections and generating playlists. Although metadata giving details of e.g. the track title, the album, the artists etc. is available for much of the music available on the web, it is not universal, and this data is usually not detailed enough to implement the above techniques to a high standard. We have been investigating techniques for automatically classifying the genre of a song and measuring the similarity of two songs using only the audio signal. I will describe our approach to these two related tasks, and present results that suggest it is possible to perform them with reasonable accuracy. I will also demonstrate our musical similarity software that suggests songs similar to an input song from a 5000 song collection.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Multimedia and Information Systems is...

We focus on content-based information retrieval over a wide range of data spanning form unstructured text and unlabelled images over spoken documents and music to videos. This encompasses the modelling of human perception of relevance and similarity, the learning from user actions and the up-to-date presentation of information. Currently we are building a research version of an integrated multimedia information retrieval system MIR to be used as a research prototype. We aim for a system that understands the user's information need and successfully links it to the appropriate information sources, be it a report or a TV news clip. This work is guided by the vision that an automated knowledge extraction system ultimately empowers people making efficient use of information sources without the burden of filing data into specialised databases.
Visit the MMIS website
Check out these Hot Multimedia and Information Systems Projects:
List all Multimedia and Information Systems Projects
Check out these Hot Multimedia and Information Systems Technologies:
List all Multimedia and Information Systems Technologies
List all Multimedia and Information Systems Projects
Check out these Hot Multimedia and Information Systems Technologies:
List all Multimedia and Information Systems Technologies



