Compound Classification Models for Recommender Systems
This event took place on Friday 19 May 2006 at 15:00
Prof. Dr. Dr. Lars Schmidt-Thieme University of Freiburg
Recommender systems recommend products to customers based on ratings or past customer behavior. Without any information about attributes of the products or customers involved, the problem has been tackled most successfully by a nearest neighbor method called collaborative filtering in the context, while additional efforts invested in building classification models did not pay off and did not increase the quality. Therefore, classification methods have mainly been used in conjunction with product or customer attributes.
Starting from a view on the plain recommendation task without attributes as a multi-class classification problem, we investigate two particularities, its autocorrelation structure as well as the absence of re-occurring items (repeat buying). We adapt the standard generic reductions 1-vs-rest and 1-vs-1 of multi-class problems to a set of binary classification problems to these particularities and thereby provide a generic compound classifier for recommender systems. We evaluate a particular specialization thereof using linear support vector machines as member classifiers on MovieLens data and show that it outperforms state-of-the-art methods, i.e., item-based collaborative filtering.
This event took place on Friday 19 May 2006 at 15:00
Prof. Dr. Dr. Lars Schmidt-Thieme University of Freiburg
Recommender systems recommend products to customers based on ratings or past customer behavior. Without any information about attributes of the products or customers involved, the problem has been tackled most successfully by a nearest neighbor method called collaborative filtering in the context, while additional efforts invested in building classification models did not pay off and did not increase the quality. Therefore, classification methods have mainly been used in conjunction with product or customer attributes.
Starting from a view on the plain recommendation task without attributes as a multi-class classification problem, we investigate two particularities, its autocorrelation structure as well as the absence of re-occurring items (repeat buying). We adapt the standard generic reductions 1-vs-rest and 1-vs-1 of multi-class problems to a set of binary classification problems to these particularities and thereby provide a generic compound classifier for recommender systems. We evaluate a particular specialization thereof using linear support vector machines as member classifiers on MovieLens data and show that it outperforms state-of-the-art methods, i.e., item-based collaborative filtering.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Narrative Hypermedia is...

Hypermedia is the combination of hypertext for linking and structuring multimedia information.
Narrative Hypermedia is therefore concerned with how all of the above narrative forms, plus the many other diverse forms of discourse possible on the Web, can be effectively designed to communicate coherent conceptual structures, drawing inspiration from theories in narratology, semiotics, psycholinguistics and film.
Check out these Hot Narrative Hypermedia Projects:
List all Narrative Hypermedia Projects
Check out these Hot Narrative Hypermedia Technologies:
List all Narrative Hypermedia Technologies
List all Narrative Hypermedia Projects
Check out these Hot Narrative Hypermedia Technologies:
List all Narrative Hypermedia Technologies



