KMi Seminars
Comparing Dissimilarity Measures for Content-Based Image Retrieval
This event took place on Monday 07 January 2008 at 13:30

 
Rui Hu KMi - The Open University

Dissimilarity measurement plays a crucial role in content-based image retrieval, where data objects and queries are represented as vectors in high-dimensional content feature spaces. Given the large number of dissimilarity measures that exist, a crucial research question arises: Is there a dependency, if yes, what is the dependency, of a dissimilarity measure?s retrieval performance, on different feature spaces? In this report, we summarize fourteen core dissimilarity measures and classify them into three categories. A systematic performance comparison is carried out to test the e?ectiveness of these dissimilarity measures with six different feature spaces. Based on the experimental results, we recommend some dissimilarity measures for future use.

 
KMi Seminars
 

New Media Systems is...


Our New Media Systems research theme aims to show how new media devices, standards, architectures and concepts can change the nature of learning.

Our work involves the development of short life-cycle working prototypes of innovative technologies or concepts that we believe will influence the future of open learning within a 3-5 year timescale. Each new media concept is built into a working prototype of how the innovation may change a target community. The working prototypes are all available (in some form) from this website.

Our prototypes themselves are not designed solely for traditional Open Learning, but include a remit to show how that innovation can and will change learning at all levels and in all forms; in education, at work and play.