KMi Seminars
Better Science Through Benchmarking: Lessons for Software Engineering
This event took place on Friday 04 June 2004 at 14:30

 
Susan Elliott Sim

Benchmarking has been used to compare the performance of a variety of technologies, including computer systems, information retrieval systems, and database management systems. In these and other research areas, benchmarking has caused the science to leap forward. Until now, research disciplines have enjoyed these benefits without a good understanding of how they were achieved. In this talk, I present a process model and a theory of benchmarking to account for these effects. These were developed by examining case histories of existing benchmarks and my own experience with community-wide tool evaluations in software reverse engineering. According to the theory, the tight relationship between a benchmark and the scientific paradigm of a discipline is responsible for the leap forward. A benchmark operationalizes a scientific paradigm; it takes an abstract concept and turns it into a guide for research. Application of this theory will be illustrated using an example from reverse engineering: the C++ Extractor Test Suite (CppETS), a benchmark for comparing fact extractors for the C++ programming language. This talk will conclude with a discussion of how insights from studying benchmarking can improve the science in software engineering and collaboration in scientific communities more broadly.

(No replay available due to a shortage of technical staff to record event on the day)

 
KMi Seminars Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

New Media Systems is...


Our New Media Systems research theme aims to show how new media devices, standards, architectures and concepts can change the nature of learning.

Our work involves the development of short life-cycle working prototypes of innovative technologies or concepts that we believe will influence the future of open learning within a 3-5 year timescale. Each new media concept is built into a working prototype of how the innovation may change a target community. The working prototypes are all available (in some form) from this website.

Our prototypes themselves are not designed solely for traditional Open Learning, but include a remit to show how that innovation can and will change learning at all levels and in all forms; in education, at work and play.