Uncertainty Handling in the Context of Ontology Mapping for Question-Answering
This event took place on Wednesday 17 January 2007 at 11:30
Miklos Nagy KMi, The Open University
The combination of different similarity methods in the current ontology mapping approaches can considerably increase the quality of the mappings however uncertainty caused by incomplete or inconsistent data has received relatively little attention in the ontology mapping community. This paper describes a framework for integrating similarity measures and Dempster-Shafer belief functions for ontology mapping in the context of multi agent ontology mapping. Our novel approach describes how to incorporate uncertainty which is inherent to the ontology mapping process, and utilize the Dempster-Shafer model for dealing with incomplete and uncertain information produced during the mapping and combination in order to improve the correctness of the mapping. Our main objective was to assess how applying the belief function can improve correctness of the ontology mapping through combining the similarities which were originally created by both syntactic and semantic similarity algorithms. We have participated and carried out experiments with the data sets of the Ontology Alignment Evaluation Initiative 2006 which served as a test bed to assess both the strong and weak points of our system. The experiments confirm that our algorithm performs well with both concept and property names.
Download presentation slides (zip format)
This event took place on Wednesday 17 January 2007 at 11:30
The combination of different similarity methods in the current ontology mapping approaches can considerably increase the quality of the mappings however uncertainty caused by incomplete or inconsistent data has received relatively little attention in the ontology mapping community. This paper describes a framework for integrating similarity measures and Dempster-Shafer belief functions for ontology mapping in the context of multi agent ontology mapping. Our novel approach describes how to incorporate uncertainty which is inherent to the ontology mapping process, and utilize the Dempster-Shafer model for dealing with incomplete and uncertain information produced during the mapping and combination in order to improve the correctness of the mapping. Our main objective was to assess how applying the belief function can improve correctness of the ontology mapping through combining the similarities which were originally created by both syntactic and semantic similarity algorithms. We have participated and carried out experiments with the data sets of the Ontology Alignment Evaluation Initiative 2006 which served as a test bed to assess both the strong and weak points of our system. The experiments confirm that our algorithm performs well with both concept and property names.
Download presentation slides (zip format)
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
New Media Systems is...
Our New Media Systems research theme aims to show how new media devices, standards, architectures and concepts can change the nature of learning.
Our work involves the development of short life-cycle working prototypes of innovative technologies or concepts that we believe will influence the future of open learning within a 3-5 year timescale. Each new media concept is built into a working prototype of how the innovation may change a target community. The working prototypes are all available (in some form) from this website.
Our prototypes themselves are not designed solely for traditional Open Learning, but include a remit to show how that innovation can and will change learning at all levels and in all forms; in education, at work and play.
Check out these Hot New Media Systems Projects:
List all New Media Systems Projects
Check out these Hot New Media Systems Technologies:
List all New Media Systems Technologies
List all New Media Systems Projects
Check out these Hot New Media Systems Technologies:
List all New Media Systems Technologies



