Assumption-based argumentation
This event took place on Monday 11 June 2007 at 11:30
Dr Francesca Toni Imperial College London, Department of Computing
Argumentation has proven to be a useful abstraction mechanism for understanding several problems, for example non-monotonic, defeasible reasoning in artificial intelligence, legal reasoning, several forms of practical reasoning performed by intelligent agents, medical decision-making, and security.
In order to provide tools to solve these problems, several computational frameworks for argumentation have been proposed, often based upon Dung's abstract argumentation. This form of argumentation focuses on determining the "acceptability'' of arguments based upon their capability to counter-attack all arguments attacking them. In abstract argumentation these arguments and attack relation between arguments are seen as primitive notions, defined entirely abstractly, and this allows for intuitive and simple computational models, but does
not show how to find arguments and how to exploit the fact that different arguments are built from the same premises. Assumption-based argumentation is a general-purpose framework for argumentation, whereby arguments and attack relation are not primitive concepts, but are defined instead in terms of deductions from assumptions and contraries of assumptions.
In this talk I will describe assumption-based argumentation, how it relates to abstract argumentation, several computational models for assumption-based argumentation, a family of systems implementing these models and some applications. I will also discuss the limitations of these systems when deployed by non-expert users.
This event took place on Monday 11 June 2007 at 11:30
Argumentation has proven to be a useful abstraction mechanism for understanding several problems, for example non-monotonic, defeasible reasoning in artificial intelligence, legal reasoning, several forms of practical reasoning performed by intelligent agents, medical decision-making, and security.
In order to provide tools to solve these problems, several computational frameworks for argumentation have been proposed, often based upon Dung's abstract argumentation. This form of argumentation focuses on determining the "acceptability'' of arguments based upon their capability to counter-attack all arguments attacking them. In abstract argumentation these arguments and attack relation between arguments are seen as primitive notions, defined entirely abstractly, and this allows for intuitive and simple computational models, but does
not show how to find arguments and how to exploit the fact that different arguments are built from the same premises. Assumption-based argumentation is a general-purpose framework for argumentation, whereby arguments and attack relation are not primitive concepts, but are defined instead in terms of deductions from assumptions and contraries of assumptions.
In this talk I will describe assumption-based argumentation, how it relates to abstract argumentation, several computational models for assumption-based argumentation, a family of systems implementing these models and some applications. I will also discuss the limitations of these systems when deployed by non-expert users.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Semantic Web and Knowledge Services is...

Our research in the Semantic Web area looks at the potentials of fusing together advances in a range of disciplines, and applying them in a systemic way to simplify the development of intelligent, knowledge-based web services and to facilitate human access and use of knowledge available on the web. For instance, we are exploring ways in which tnatural language interfaces can be used to facilitate access to data distributed over different repositories. We are also developing infrastructures to support rapid development and deployment of semantic web services, which can be used to create web applications on-the-fly. We are also investigating ways in which semantic technology can support learning on the web, through a combination of knowledge representation support, pedagogical theories and intelligent content aggregation mechanisms. Finally, we are also investigating the Semantic Web itself as a domain of analysis and performing large scale empirical studies to uncover data about the concrete epistemologies which can be found on the Semantic Web. This exciting new area of research gives us concrete insights on the different conceptualizations that are present on the Semantic Web by giving us the possibility to discover which are the most common viewpoints, which viewpoints are mutually inconsistent, to what extent different models agree or disagree, etc...
Our aim is to be at the forefront of both theoretical and practical developments on the Semantic Web not only by developing theories and models, but also by building concrete applications, for a variety of domains and user communities, including KMi and the Open University itself.
Check out these Hot Semantic Web and Knowledge Services Projects:
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies

