An Adaptive Four-factor User Interaction Model for Content-Based Image Retrieval
This event took place on Wednesday 23 September 2009 at 00:00
Haiming Liu
In order to bridge the "Semantic gap", a number of relevance feedback (RF) mechanisms have been applied to content-based image retrieval (CBIR). However current RF techniques in most existing CBIR systems still lack satisfactory user interaction although some work has been done to improve the interaction as well as the search accuracy. Thus, we propose a four-factor user interaction model and investigate its effects on CBIR by an empirical and a user evaluation. Whilst the model was developed for our research purposes, we believe the model could be adapted to any content-based search system.
This event took place on Wednesday 23 September 2009 at 00:00
In order to bridge the "Semantic gap", a number of relevance feedback (RF) mechanisms have been applied to content-based image retrieval (CBIR). However current RF techniques in most existing CBIR systems still lack satisfactory user interaction although some work has been done to improve the interaction as well as the search accuracy. Thus, we propose a four-factor user interaction model and investigate its effects on CBIR by an empirical and a user evaluation. Whilst the model was developed for our research purposes, we believe the model could be adapted to any content-based search system.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Semantic Web and Knowledge Services is...

Our research in the Semantic Web area looks at the potentials of fusing together advances in a range of disciplines, and applying them in a systemic way to simplify the development of intelligent, knowledge-based web services and to facilitate human access and use of knowledge available on the web. For instance, we are exploring ways in which tnatural language interfaces can be used to facilitate access to data distributed over different repositories. We are also developing infrastructures to support rapid development and deployment of semantic web services, which can be used to create web applications on-the-fly. We are also investigating ways in which semantic technology can support learning on the web, through a combination of knowledge representation support, pedagogical theories and intelligent content aggregation mechanisms. Finally, we are also investigating the Semantic Web itself as a domain of analysis and performing large scale empirical studies to uncover data about the concrete epistemologies which can be found on the Semantic Web. This exciting new area of research gives us concrete insights on the different conceptualizations that are present on the Semantic Web by giving us the possibility to discover which are the most common viewpoints, which viewpoints are mutually inconsistent, to what extent different models agree or disagree, etc...
Our aim is to be at the forefront of both theoretical and practical developments on the Semantic Web not only by developing theories and models, but also by building concrete applications, for a variety of domains and user communities, including KMi and the Open University itself.
Check out these Hot Semantic Web and Knowledge Services Projects:
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies

