MUP/PLE lecture series
This event took place on Thursday 23 June 2011 at 14:00
Hendrik Drachsler Open University in the Netherlands
Technology-enhanced learning aims to design, develop and test socio-technical innovations that will support and enhance learning practices and knowledge sharing of individuals and organizations. It is therefore an application domain that generally covers technologies that support all forms of teaching and learning activities. With the increasing use of Learning Management Systems, Personal Learning Environments, and Data Mashups the TEL field, became a promising application area for information retrieval technologies and Recommender Systems to suggest most suitable learning content or peers to learners. The renewed interest in information retrieval technologies in TEL reveals itself through an increasing number of scientific events and publications combined under the research term Learning Analytics. Learning Analytics has the potential for new insights into learning processes by making so far invisible patterns in the educational data visible to researchers and develop new services for educational practice.
This lecture attempts to provide an introduction to Recommender Systems for TEL, as well as to highlight their particularities compared to recommender systems for other application domains. Finally, it will outline the latest developments of Recommender Systems in the area of Learning Analytics.
This event took place on Thursday 23 June 2011 at 14:00
Technology-enhanced learning aims to design, develop and test socio-technical innovations that will support and enhance learning practices and knowledge sharing of individuals and organizations. It is therefore an application domain that generally covers technologies that support all forms of teaching and learning activities. With the increasing use of Learning Management Systems, Personal Learning Environments, and Data Mashups the TEL field, became a promising application area for information retrieval technologies and Recommender Systems to suggest most suitable learning content or peers to learners. The renewed interest in information retrieval technologies in TEL reveals itself through an increasing number of scientific events and publications combined under the research term Learning Analytics. Learning Analytics has the potential for new insights into learning processes by making so far invisible patterns in the educational data visible to researchers and develop new services for educational practice.
This lecture attempts to provide an introduction to Recommender Systems for TEL, as well as to highlight their particularities compared to recommender systems for other application domains. Finally, it will outline the latest developments of Recommender Systems in the area of Learning Analytics.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Semantic Web and Knowledge Services is...

Our research in the Semantic Web area looks at the potentials of fusing together advances in a range of disciplines, and applying them in a systemic way to simplify the development of intelligent, knowledge-based web services and to facilitate human access and use of knowledge available on the web. For instance, we are exploring ways in which tnatural language interfaces can be used to facilitate access to data distributed over different repositories. We are also developing infrastructures to support rapid development and deployment of semantic web services, which can be used to create web applications on-the-fly. We are also investigating ways in which semantic technology can support learning on the web, through a combination of knowledge representation support, pedagogical theories and intelligent content aggregation mechanisms. Finally, we are also investigating the Semantic Web itself as a domain of analysis and performing large scale empirical studies to uncover data about the concrete epistemologies which can be found on the Semantic Web. This exciting new area of research gives us concrete insights on the different conceptualizations that are present on the Semantic Web by giving us the possibility to discover which are the most common viewpoints, which viewpoints are mutually inconsistent, to what extent different models agree or disagree, etc...
Our aim is to be at the forefront of both theoretical and practical developments on the Semantic Web not only by developing theories and models, but also by building concrete applications, for a variety of domains and user communities, including KMi and the Open University itself.
Check out these Hot Semantic Web and Knowledge Services Projects:
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies

