Compound Classification Models for Recommender Systems
This event took place on Friday 19 May 2006 at 15:00
Prof. Dr. Dr. Lars Schmidt-Thieme University of Freiburg
Recommender systems recommend products to customers based on ratings or past customer behavior. Without any information about attributes of the products or customers involved, the problem has been tackled most successfully by a nearest neighbor method called collaborative filtering in the context, while additional efforts invested in building classification models did not pay off and did not increase the quality. Therefore, classification methods have mainly been used in conjunction with product or customer attributes.
Starting from a view on the plain recommendation task without attributes as a multi-class classification problem, we investigate two particularities, its autocorrelation structure as well as the absence of re-occurring items (repeat buying). We adapt the standard generic reductions 1-vs-rest and 1-vs-1 of multi-class problems to a set of binary classification problems to these particularities and thereby provide a generic compound classifier for recommender systems. We evaluate a particular specialization thereof using linear support vector machines as member classifiers on MovieLens data and show that it outperforms state-of-the-art methods, i.e., item-based collaborative filtering.
This event took place on Friday 19 May 2006 at 15:00
Prof. Dr. Dr. Lars Schmidt-Thieme University of Freiburg
Recommender systems recommend products to customers based on ratings or past customer behavior. Without any information about attributes of the products or customers involved, the problem has been tackled most successfully by a nearest neighbor method called collaborative filtering in the context, while additional efforts invested in building classification models did not pay off and did not increase the quality. Therefore, classification methods have mainly been used in conjunction with product or customer attributes.
Starting from a view on the plain recommendation task without attributes as a multi-class classification problem, we investigate two particularities, its autocorrelation structure as well as the absence of re-occurring items (repeat buying). We adapt the standard generic reductions 1-vs-rest and 1-vs-1 of multi-class problems to a set of binary classification problems to these particularities and thereby provide a generic compound classifier for recommender systems. We evaluate a particular specialization thereof using linear support vector machines as member classifiers on MovieLens data and show that it outperforms state-of-the-art methods, i.e., item-based collaborative filtering.
Future Internet
KnowledgeManagementMultimedia &
Information SystemsNarrative
HypermediaNew Media SystemsSemantic Web &
Knowledge ServicesSocial Software
Semantic Web and Knowledge Services is...

Our research in the Semantic Web area looks at the potentials of fusing together advances in a range of disciplines, and applying them in a systemic way to simplify the development of intelligent, knowledge-based web services and to facilitate human access and use of knowledge available on the web. For instance, we are exploring ways in which tnatural language interfaces can be used to facilitate access to data distributed over different repositories. We are also developing infrastructures to support rapid development and deployment of semantic web services, which can be used to create web applications on-the-fly. We are also investigating ways in which semantic technology can support learning on the web, through a combination of knowledge representation support, pedagogical theories and intelligent content aggregation mechanisms. Finally, we are also investigating the Semantic Web itself as a domain of analysis and performing large scale empirical studies to uncover data about the concrete epistemologies which can be found on the Semantic Web. This exciting new area of research gives us concrete insights on the different conceptualizations that are present on the Semantic Web by giving us the possibility to discover which are the most common viewpoints, which viewpoints are mutually inconsistent, to what extent different models agree or disagree, etc...
Our aim is to be at the forefront of both theoretical and practical developments on the Semantic Web not only by developing theories and models, but also by building concrete applications, for a variety of domains and user communities, including KMi and the Open University itself.
Check out these Hot Semantic Web and Knowledge Services Projects:
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies
List all Semantic Web and Knowledge Services Projects
Check out these Hot Semantic Web and Knowledge Services Technologies:
List all Semantic Web and Knowledge Services Technologies



