KMi Seminars
Resolution Mosaic Image Segmentation
This event took place on Wednesday 09 July 2008 at 11:30

 
Mohammed Abdel-Megeed Salem Humboldt-Universitaet zu Berlin

Due to the popularity of visual-based information in the forms of images and videos, more computer vision systems take part in the automation of diverse applications, such as medical diagnosing, monitoring and security. Segmentation is a necessary step in almost every pattern recognition and computer vision system. As the spectrum of the applications expands, the demand for an accurate and fast segmentation process increases.

In this talk we present an algorithm for image segmentation, that is based on the multiresolution analysis and the well known expectation maximisation algorithm. Based on the distribution of the information contained in the image, the multiresolution analysis is used to re-represent the image in a mosaic of different resolutions. Within this new re-representation the irrelevant information is suppressed in the segmentation process. The image is then modelled to be generated by a statistical field. The expectation maximisation algorithm is used to find the missing parameters of the model. A magnetic resonance image and many synthetic images were used for testing and evaluating the algorithm. The experiments show its robustness against noise.

 
KMi Seminars Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Social Software is...


Social Software
Social Software can be thought of as "software which extends, or derives added value from, human social behaviour - message boards, musical taste-sharing, photo-sharing, instant messaging, mailing lists, social networking."

Interacting with other people not only forms the core of human social and psychological experience, but also lies at the centre of what makes the internet such a rich, powerful and exciting collection of knowledge media. We are especially interested in what happens when such interactions take place on a very large scale -- not only because we work regularly with tens of thousands of distance learners at the Open University, but also because it is evident that being part of a crowd in real life possesses a certain 'buzz' of its own, and poses a natural challenge. Different nuances emerge in different user contexts, so we choose to investigate the contexts of work, learning and play to better understand the trade-offs involved in designing effective large-scale social software for multiple purposes.